เกษตรธรรมชาติ ถือว่า ดินดี คือ ดินที่มีชีวิต เป็นดินที่มีความสมดุลของสิ่งมีชีวิตในดินรวมถึงจุลินทรีย์ที่อยู่ในดิน สมดุลของจุลินทรีย์ที่อยู่ในดินสภาพธรรมชาติก็คือ ความเหมาะสมในด้านของจำนวนจุลินทรีย์ และความหลากหลายของจุลินทรีย์ ดินที่เหมาะสมที่สุดในการทำการเกษตรคือ ดินที่มีจุลินทรีย์อยู่หลายกลุ่ม ตัวอย่างของดินดีชนิดหนึ่งคือ ดินป่า นั่นเอง
ในอดีตสภาพแวดล้อมที่เหมาะสมจะมีอยู่ในดินป่า ในป่าซึ่งมีสารอินทรีย์ในรูปใบไม้หรือซากพืชซากสัตว์ที่เพิ่มลงไปกับประมาณธาตุอาหารพืชที่ถูกนำไปใช้และถูกเก็บเกี่ยวเป็นผลผลิตออกไปจากพื้นที่ที่สมดุลกัน ก็คือ มีธาตุอาหารพืชที่ถูกใช้ไปกับส่วนที่เพิ่มเติมลงมาในดินเท่ากัน จากการที่มีเศษซากอินทรียวัตถุหล่นลงดินหรือที่พืชตรึงไนโตรเจนจากอากาศลงสู่ดิน โดยมีจุลินทรีย์เป็นตัวช่วยในกระบวนการย่อยสลายและเปลี่ยนรูปธาตุอาหารให้เป็นประโยชน์ เป็นกระบวนการที่เรียกว่าการนำกลับมาใช้ใหม่ ทำให้พืชมีการเจริญเติบโตและสร้างผลผลิต ผลิดอกออกผลเป็นดอกไม้ ผัก ผลไม้ และอื่นๆ ส่วนสิ่งที่ถูกนำออกมาจากพื้นที่นั้นๆ คือธาตุอาหารพืชที่สูญเสียไปจากดิน ซึ่งในพื้นที่ทำการเกษตรส่วนใหญ่ เกษตรกรมักจะนำผลผลิตทางการเกษตรที่ได้ออกมาจากพื้นที่ โดยไม่ได้คำนึงถึงปริมาณธาตุอาหารพืชที่จะเพิ่มเข้าไปในพื้นที่ ทำให้พื้นที่ที่ทำการเกษตรส่วนใหญ่ในปัจจุบันเกิดความไม่สมดุลกัน จึงมีผลทำให้ความอุดมสมบูรณ์ของดินเสื่อมโทรมลงเป็นลำดับ
จุลินทรีย์มีบทบาทอย่างมากในกระบวนการนำกลับมาใช้ใหม่หรือการแปรสภาพอินทรียวัตถุในดินให้กลายเป็นธาตุอาหารที่เป็นประโยชน์กับพืช โดยจุลินทรีย์จะมีขั้นตอนของความหลากหลายในกระบวนการนำกลับมาใช้ใหม่ เพราะมีวงจรชีวิตที่สั้น และมีหลายชนิด แต่ละชนิดก็มีปริมาณที่มาก ซึ่งมีหน้าที่และบทบาทต่อกระบวนการต่างๆ ในดินแตกต่างกันไป เพราะฉะนั้นจึงถือได้ว่าจุลินทรีย์ก็คือ ตัวการที่จะทำให้สารอินทรีย์จากซากพืชซากสัตว์ย้อนกลับไปเป็นธาตุอาหารพืชใหม่ได้อีกครั้ง นั่นคือทำให้เกิดการหมุนเวียนธาตุอาหารพืชในดิน ดังนั้นดินป่าจึงมักมีอินทรียวัตถุอยู่สูงมีการหมุนเวียนในระบบนิเวศอย่างสมดุล แต่ในปัจจุบันการทำการเกษตรมีการใช้ปุ๋ยเคมีกันมากเพราะความต้องการผลผลิตที่มากขึ้น เมื่อต้องการผลผลิตมากขึ้นก็จำเป็นต้องนำเอาปัจจัยการผลิตอื่นๆ ใส่เข้าไปเพิ่มมากขึ้น ทำให้เกิดปัญหาการใช้อย่างไม่สมดุล เป็นการใช้อย่างทำลายมากกว่า จะเห็นได้จากกรณีการเปิดป่า หรือการนำพื้นที่มาใช้จะเริ่มต้นด้วยการเผา ซึ่งทำให้จุลินทรีย์ส่วนหนึ่งตายไป และอินทรีย์วัตถุส่วนหนึ่งหายไป ส่วนทีเคยอยู่ในระบบก็หายออกไปอยู่นอกระบบ เมื่อจุลินทรีย์หลายชนิดตายไปอีกหลายชนิดก็ลดจำนวนลง อัตราการเกิดกระบวนการหมุนเวียนย้อนกลับไปเป็นปัจจัยการผลิตก็ลดน้อยลง
ทันทีที่เปิดหน้าดินทำลายพืชที่ปกคลุมผิวดิน เกษตรกรก็จะเริ่มทำการเผาก่อน สิ่งทีหายไปคืออินทรียวัตถุในดิน ชนิดของจุลินทรีย์และปริมาณของจุลินทรีย์ เมื่อปลูกพืชต่อเนื่องไปได้ 2-3 ปี จะสังเกตเห็นได้ว่าผลผลิตที่ได้เริ่มลดลงและเพาะปลูกไม่ได้ผล ต้นทุนการผลิตสูงขึ้นเพราะดินไม่ดี โรคแมลงศัตรูพืชมากขึ้นต้องใช้ปัจจัยการผลิตที่สูงมากขึ้น นั่นคือการขาดความสมดุลในพื้นที่ การทำการเกษตรในบางพื้นที่จะทิ้งพื้นที่บริเวณนั้นไว้ 3-5 ปี จนกระทั่งอินทรียวัตถุเพิ่มมากขึ้นพื้นดินจึงฟื้นกลับมามีความสมดุลอีกครั้ง ที่เป็นเช่นนั้นเพราะการปล่อยพื้นที่ไว้โดยไม่เข้าไปยุ่ง จะทำให้พืชพันธุ์ต่างๆ เจริญเติบโต และตายลงสลายตัวกลายเป็นธาตุอาหารพืชย้อนกลับสู่ดิน และจากสารอินทรีย์ที่รากพืชปลดปล่อยออกมาในบริเวณใกล้ๆ ราก สิ่งเหล่านี้จะชักนำให้จุลินทรีย์เพิ่มจำนวนขึ้นและเกิดความหลากหลายของจุลินทรีย์อีกครั้ง นอกจากนี้ยังชักนำให้มีสิ่งมีชีวิตอื่นๆ ในดิน
ตามมา ทำให้ดินในพื้นที่นั้นกลับมาสมบูรณ์อีกครั้ง ฉะนั้นถ้าให้เวลาธรราชาติสัก 3-5 ปี ทุกอย่างจะพื้นคืนสภาพได้เอง แต่ในปัจจุบันเกษตรกรไม่สามารถรอเวลานั้นได้ เนื่องจากพื้นที่มีจำกัดและความต้องการผลผลิตที่รวดเร็วและปริมาณมากขึ้น เพื่อตอบสนองความต้องการทางเศรษฐกิจ ดังนั้นระบบเกษตรแผนปัจจุบันจึงเลือกใช้ปุ๋ยเคมีและสารเคมีกำจัดศัตรูพืชในการแก้ปัญหานี้ ในขณะที่ระบบเกษตรธรรมชาติและเกษตรอินทรีย์จะใช้วิธีการที่ดีกว่าคือ เติมปุ๋ยอินทรีย์ที่ผลิตจากวัสดุเหลือใช้ทางการเกษตรหรือขยะอินทรีย์ต่างๆ ที่สามารถนำมากลับมาใช้ได้ใหม่ และเพิ่มจุลินทรีย์ธรรมชาติเข้าไปด้วย
จุลินทรีย์ที่มีบทบาทต่อความอุดมสมบูรณ์ของดิน
จุลินทรีย์มีหลายชนิดได้แก่ แบคทีเรีย เชื้อรา แอคติโนมัยซีส และสาหร่าย แต่ละชนิดจะมีบทบาทและกิจกรรมต่อความอุดมสมบูรณ์ ได้แก่
1. แบคทีเรีย (Bacteria) เป็นจุลินทรีย์ขนาดเล็กที่สุดเมื่อเปรียบเทียบกับเชื้อรา โปรโตซัว และ
สาหร่าย มีรูปร่างแบบง่ายๆ 3 รูปร่างคือ กลม (Cocci) ท่อน (Rod) เกลียว (Spiral) ไม่มีรงควัตถุภายในเซลล์ คือ เซลล์มักจะใส มีทั้งเคลื่อนที่ได้และไม่เคลื่อนที่ เราสามารถแบ่งชนิดของจุลินทรีย์ได้หลายประเภทดังนี้
1.1 แบ่งประเภทของแบคทีเรียตามช่วงอุณหภูมิ
1.2 แบ่งประเภทของแบคทีเรียตามความต้องการออกซิเจน
1.3 แบ่งประเภทของแบคทีเรียตามลักษณะทางนิเวศวิทยา
1.4 แบ่งประเภทของแบคทีเรียตามการสร้างอาหาร
แบคทีเรียเป็นจุลินทรีย์ที่พบเป็นจำนวนมากที่สุดในจุลินทรีย์ทั้งหมด โดยจำนวนแบคทีเรียคิดเป็น 50% ของน้ำหนักจุลินทรีย์ทั้งหมด และมีกิจกรรมคิดเป็น 95% ของจุลินทรีย์ทุกชนิดรวมกัน พบได้ทั่วไปในธรรมชาติ จัดได้ว่าเป็นจุลินทรีย์ที่มีบทบาทอย่างมากในธรรมชาติ ที่เกี่ยวข้องกับกระบวนการต่างๆ ของสิ่งมีชีวิต
2. เชื้อรา (Fungi)
2.1 ยีสต์ เป็นเชื้อราซึ่งมีลักษณะแปลกตรงที่ มีการดำรงชีวิตอยู่ในสภาพเซลล์เดียว (Unicellular) แทนที่จะเจริญเป็นเส้นใยเหมือนเชื้อราอื่นๆ ทั่วไป จริงอยู่แม้ยีสต์บางชนิดมีการสร้างเส้นใยบ้าง แต่ก็ไม่เด่นเช่นเชื้อรา ปกติยีสต์เพิ่มจำนวนและแบ่งเซลล์โดยการแตกหน่อ (Budding) เซลล์ยีสต์จะใหญ่กว่าแบคทีเรียและมีนิวเคลียสที่เห็นได้ชัดเจน นอกจากนี้ในเซลล์ยีสต์เรามักจะสังเกตเห็นแวคคูโอล (Vacuole) ขนาดใหญ่ พร้อมทั้งเม็ดสาร (Granule) ต่างๆ ในไซโตพลาสซึม (Cytoplasm) อยู่เสมอ
2.2 ราเส้นใย เป็นจุลินทรีย์ที่มีการพัฒนามาดำรงชีวิตอยู่ในสภาพหลายเซลล์ (Multicellular) โดยส่วนใหญ่จะมีลักษณะการเจริญเป็นเส้นใย (Hyphae) ซึ่งอาจมีผนังกั้น (Septate Hypha) หรือไม่มีผนังกั้น (Non Septate Hypha หรือ Coenocytic Hypha) เชื้อราเป็นจุลินทีรย์ที่มีความหลากหลาย มีความแตกต่างกันมากในด้านขนาดรูปร่างของโครงสร้างและระบบการสืบพันธุ์ โดยทั่วไปเชื้อรามีการสืบพันธุ์ด้วยการสร้างสปอร์ ซึ่งมีทั้งสปอร์แบบไม่อาศัยเพศ (Asexual Spores) และสปอร์แบบอาศัยเพศ (Sexual Spores)
3. แอคติโนมัยซิท (Actinomycetes) เป็นจุลินทรีย์จำพวกเซลล์เดี่ยวที่มีลักษณะคล้ายคลึงทั้งแบคทีเรียและเชื้อรา โดยมีขนาดเล็กคล้ายแบคทีเรีย แต่มีการเจริญเป็นเส้นใยและสร้างสปอร์คล้ายเชื้อรา มีเส้นใยที่ยาวเรียวและอาจจะแตกสาขาออกไปเส้นใยเรียกว่า Hyphae หรือ Filaments
4. สาหร่ายสีเขียวแกมน้ำเงิน (Blue Green Algae หรือ Cyanobacteria) แตกต่างจากจุลินทรีย์ชนิดอื่นตรงที่มีคลิโรฟิลล์มักเห็นเซลล์เป็นสีเขียว เซลล์เป็น Procaryote ซึ่งเหมือนกับแบคทีเรีย และมีสาร Mucopeptide เป็นองค์ประกอบของผนังเซลล์เช่นเดียวกับแบคทีเรีย สาหร่ายพวกนี้ไม่มีคลอโร พลาสต์ ดังนั้นคลอโรฟิลล์จึงกระจายอยู่ทั่วไปในเซลล์
บทบาทและความสำคัญของจุลินทรีย์ในการเกษตร
จุลินทรีย์มีหลายชนิต ได้แก่ แบคทีเรีย เชื้อรา แอคติโนมัยซิท สาหร่าย โปรโตซัว ไมโครพลาสมาโรติเฟอร์ และไวร้ส เป็นต้น บทบาทและความสำคัญของจุลินทรีย์มีอยู่มากมายดังนี้
กลุ่มจุลินทรีย์ที่มีประโยชน์ทางการเกษตร
1. จุลินทรีย์ที่ตรึงไนโตรเจน (Nitrogen Fixing Microorganisms) ซึ่งมักจะเป็นกลุ่มแบคทีเรีย เพราะทำงานเร็วและมีจำนวนอยู่มาก โดยครึ่งหนึ่งของมวลจุลินทรีย์ทั้งหมดในโลกคือ แบคทีเรีย แบคทีเรียที่ตรึงไนโตรเจนได้แบ่งเป็น 2 กลุ่ม คือ กลุ่มที่ต้องอยู่ร่วมกับตัวอื่นถึงจะตรึงไนโตรเจนได้แบบพึ่งพาอาศัยกันและกัน (Symbiosis) เช่น ไรโซเบียม (Rhizobium sp.) ในปมรากพืชตระกูลถั่ว และอีกกลุ่มหนึ่งที่ตรึงไนโตรเจนได้อย่างอิสระ (Non-Symbiosis)
2. จุลินทรีย์ที่ย่อยสลายสารอินทรีย์ หรือเซลลูโลส (Cellulolytic Microorganisms หรือ Cellulolytic Decomposers) เป็นพวกที่ย่อยสลายเซลลูโลส หรือซากพืช ซากสัตว์ ประกอบไปด้วย แบคทีเรีย รา แอคติโนมัยซิท และโปรโตซัว จุลินทรีย์พวกนี้พบได้ทั่วไประหว่างการสลายตัวของเศษวัสดุเหลือใช้ทางการเกษตรต่างๆ ซากพืช ซษกสัตว์ ใบไม้ กิ่งไม้ เศษหญ้า และขยะอินทรีย์ชนิดต่างๆ ทำให้เกิดปุ๋ยอินทรีย์ชนิดต่างๆ ขึ้นมาได้เช่น ปุ๋ยหมัก ปุ๋ยพืชสด ปุ๋ยคอก ปุ๋ยอินทรีย์น้ำ น้ำหมักชีวภาพ เป็นต้น
ในปุ๋ยหมักที่มีกิจกรรมจุลินทรีย์ค่อนข้างดีพบว่าในทุก 1 กรัมของปุ๋ยหมักจะต้องมีแบคทีเรีย 150-300 ไมโครกรัมและมีแบคทีเรียที่มีกิจกรรมสูง (Active) อยู่ 15-30 ไมโครกรัม มีเชื้อรา 150-200 ไมโครกรัมและมีเชื้อราที่มีกิจกรรมสูง 2-10 ไมโครกรัม มีพวกโปรโตซัว ซึ่งจะย่อยสลายเศษชิ้นส่วนขนาดใหญ่ให้มีขนาดเล็กลง ต้องมีถึงประมาณ 10,000 ตัวต่อ 1 กรัมของปุ๋ยหมัก และมีพวกไส้เดือนฝอยชนิดที่เป็นประโยชน์ 50-100 ตัว
3. จุลินทรีย์ที่ละลายฟอสเฟตและธาตุอาหารพืชอื่นๆ (Phosphate and Other Nutrient Elements Solubilizing Microorganisms) จุลินทรีย์พวกนี้สามารถทำให้ธาตุอาหารพืชหลายชนิด เช่น ฟอสฟอรัส เหล็ก สังกะสี ทองแดง และแมงกานีส ที่มักอยู่ในรูปที่พืชไม่สามารถนำไปใช้ได้ ให้ละลายออกมาอยู่ในรูปที่พืชสามารถนำไปใช้ประโยชน์ได้ รวมทั้งจุลินทรีย์ที่ช่วยส่งเสริมให้รากพืชดูดกินธาตุอาหารพืชได้ดีขึ้น ซึ่งโดยปกติแล้วจะไม่สามารถดูดกินธาตุอาหารบางชนิดได้ หรือดูดกินได้น้อย
จุลินทรีย์ที่มีความสามารถในการแปรสภาพฟอสฟอรัสจะมีทั้งกลุ่มที่ทำหน้าที่เปลี่ยนอินทรีย์ฟอสฟอรัสและอนินทรีย์ฟอสฟอรัสที่อยู่ในรูปไม่เป็นประโยชน์ต่อพืชให้อยู่ในรูปที่เป็นประโยชน์ต่อพืช ในกรณีของสารอินทรีย์ฟอสฟอรัสที่อยู่ในรูปไม่เป็นประโยชน์ต่อพืชจะอยู่ในรูปของไฟทิน และกรดฟอสฟอรัส จุลินทรีย์กลุ่มนี้จะสร้างเอนไซม์ Phytase, Phosphatase, Nucleotidases และ Glecerophosphatase เพื่อแปรสภาพอินทรีย์ฟอสฟอรัสให้อยู่ในรูปของอนินทรีย์ฟอสฟอรัสที่เรียกว่า ออโธฟอสเฟต (Orthophosphate) ซึ่งเป็นพวกโมโน (Mono) และ ไดไฮโดรเจนฟอสเฟต (Dihydrogen Phosphate) จุลินทรีย์ดังกล่าวได้แก่ แบคทีเรียในสกุล Bacillus sp. และราในสกุล Aspergillus sp., Thiobacillus, Penicillium sp. และ Rhizopus sp. เป็นต้น นอกจากนี้สารประกอบอนินทรีย์ฟอสฟอรัสบางชนิดในรูปของหินฟอสเฟตซึ่งพืชยังไม่สามารถนำไปใช้ประโยชน์ได้ ดังนี้จุลินทรีย์บางชนิดในสกุล Bacillus sp. และ Aspergillus sp. จะสร้างกรดอินทรีย์ละลายฟอสฟอรัสออกมาให้อยู่ในรูปที่เป็นประโยชน์ต่อพืชได้ นอกจากนี้เชื้อราไมคอร์ไรซา (Mycorrhizal Fungi) ยังมีบทบาทในการละลายและส่งเสริมการดูดใช้ธาตุฟอสฟอรัส
บทบาทของจุลินทรีย์ในการทำให้เกิดการหมุนเวียนทุกสิ่งทุกอย่างที่อยู่รอบๆ ตัวเรา
4. จุลินทรีย์ที่ผลิตสารป้องกันและทำลายโรคพืช จุลินทรีย์กลุ่มนี้มีประสิทธิภาพในการป้องกันและยับยั้งการเจริญของเชื้อราและแบคทีเรียพวกที่ก่อโรคบางชนิด เช่น กลุ่มแบคทีเรียที่ผลิตกรดแลคติก (Lactic Acids Bacteria) ได้แก่ Lactobacillus spp. บนใบพืชที่สมบูรณ์และมีสุขภาพดีแจะพบแบคทีเรียกลุ่มผลิตกรดแลคติกมาก จุลินทรีย์กลุ่มนี้ส่วนใหญ่ไม่ต้องการออกซิเจน (Anaerobic Microorganisms) และมีประโยชน์อย่างมากในการเกษตร เช่น เปลี่ยนสภาพดินจากดินไม่ดีหรือดินที่สะสมโรคให้กลายเป็นดินที่ต้านทานโรค ช่วยลดจำนวนจุลินทรีย์ที่เป็นสาเหตุของโรคพืชให้มีจำนวนน้อยลง มีประโยชน์ทั้งกับพืชและสัตว์ นอกจากนี้ยังมีจุลินทรีย์ที่มีความสามารถในการสร้างสารปฏิชีวนะออกมาทำลาลเชื้อโรคพืชบางชนิด เช่น เชื้อรา Aspergillus sp., Trichoderma sp. และเชื้อแอคติโนมัยซิทพวก Streptomyces sp.
5. จุลินทรีย์ที่ผลิตฮอร์โมนพืช แบคทีเรียหลายสายพันธุ์ เช่น Bacillus sp. สามารถสร้างสารกระตุ้นการเจริญเติบโตของพืช เช่น ออกซิน จิบเบอเรลลิน และไซโตไคนิน เป็นต้น ซึ่งสามารถช่วยส่งเสริมการเจริญเติบโตของพืช
http://www.maejonaturalfarming.org/
ป้ายคำ : จุลินทรีย์