ฮอร์โมนพืช

17 พฤษภาคม 2556 ภูมิปัญญา 0

ฮอร์โมนพืชเป็นสารเคมีภายในพืชซึ่งเกี่ยวข้องกับการเจริญของพืชไม่เพียงแต่การเจริญของพืชทั้งต้นเท่านั้น หากแต่ยังเกี่ยวข้องกับการเจริญของพืชแต่ละส่วนด้วย ในปัจจุบันทราบกันดีแล้วว่าฮอร์โมนพืชมีทั้งชนิดที่กระตุ้นการเจริญเติบโต และระงับการเจริญเติบโต ฮอร์โมนพืชที่พบในปัจจุบันคือออกซิน (Auxin) จิบเบอเรลลิน (Gibberellins) ไซโตไคนิน(Cytokinins) กรดแอบซิสิค (Abscisic Acid) หรือ ABA และ เอทธิลีน (Ethylene) ซึ่งมีสภาพเป็นก๊าซ

ฮอร์โมนพืช (Phytohormone) คือ สารเคมีที่พืชสร้างขึ้นในปริมาณเพียงเล็กน้อย และ มีผลต่อขบวนการ หรือ ควบคุมการเจริญในพืช (Plant Development)


ฮอร์โมนพืช
สามารถเคลื่อนย้ายภายในต้นพืชได้และมีผลกระทบต่อการเจริญเติบโต การเปลี่ยนแปลงทางคุณภาพและการพัฒนาของเนื้อเยื่อ และอวัยวะของพืชซึ่งได้รับฮอร์โมนนั้น ๆ คำว่า ฮอร์โมน นั้นเริ่มใช้โดยนักสรีรวิทยาของสัตว์ ซึ่งต่อมานักสรีรวิทยาของพืชได้นำมาใช้กับสารประกอบอินทรีย์ ซึ่งสามารถมีผลกระทบในปริมาณที่น้อยมาก โดยพืชจะสังเคราะห์ที่ส่วนหนึ่งแล้วเคลื่อนย้ายไปยังอีกส่วนหนึ่ง และมีผลต่อกระบวนการทางสรีรวิทยาที่ค่อนข้างเฉพาะเจาะจง ดังนั้นในการศึกษาทางด้านฮอร์โมนจึงมักศึกษาในแง่ของแหล่งและกระบวนการสังเคราะห์ การเคลื่อนที่และเคลื่อนย้าย และปฏิกิริยาของฮอร์โมนที่มีต่อพืช

สารควบคุมการเจริญเติบโต (Plant Growth Regulator) เป็นสารเคมีที่สำคัญในการเกษตร เป็นสารอินทรีย์ซึ่งมนุษย์สังเคราะห์ขึ้นมาได้ ซึ่งบางชนิดมีคุณสมบัติเหมือนฮอร์โมนพืช มนุษย์รู้จักการใช้สารควบคุมการเจริญเติบโตมานานแล้ว เช่น กระตุ้นให้มะม่วงหรือสับปะรดออกดอกโดยการจุดไฟข้างสวน เพื่อให้เกิดควันซึ่งมีเอทธิลีนปนอยู่ สามารถกระตุ้นให้เกิดการออกดอกได้ ถึงแม้ว่าในขณะนั้นจะยังไม่ทราบสาเหตุที่แท้จริงก็ตาม

การแสดงออกถึงลักษณะต่าง ๆ ของพืชจะเกิดจากพันธุกรรมและสภาพแวดล้อม ซึ่งรวมกับฮอร์โมนด้วย เช่น การปลูกผักกาดขาวปลีบางพันธุ์ในฤดูร้อน ผักกาดขาวปลีจะไม่เข้าหัว ฮอร์โมนบางชนิดสามารถกระตุ้นให้ผักกาดขาวปลีเข้าหัวได้ ซึ่งในกรณีนี้ฮอร์โมนจะทดแทนสภาพแวดล้อมที่เหมาะสมได้

ในประเทศไทยการใช้ฮอร์โมนพืชมีวัตถุประสงค์ในทางการเกษตรเพื่อให้มีผลผลิต เพื่อเพิ่มผลผลิตและคุณภาพ และเพื่อความสะดวกในการจัดการฟาร์ม

ปัจจุบัน จะแบ่งฮอร์โมนพืชออกเป็น

  1. ออกซิน (Auxins) เป็นสารสังเคราะห์ที่ใช้เร่งราก เปลี่ยนเพศดอก ป้องกันผลร่วง หรือจำกัดวัชพืช ได้แก่ IAA NAA (PlanofixR) IBA (SeradixR)2, 4-D และ 4-CPA
  2. จิบเบอเรลลิน (Gibberellins) สกัดจากเชื้อราบางชนิด ควบคุมการยืดตัวของเซลล์ การติดผล การเกิดดอก เร่งการเจริญเติบโต ทำลายการพักตัวของเมล็ด ได้แก่ GA ที่ใช้กันมากในปัจจุบันคือ GA3
  3. ไซโตไคนิน (Cytokinins) ควบคุมการแบ่งเซลล์ การเจริญเติบโตด้านกิ่งใบ การแตกแขนง ชะลอการแก่ ได้แก่ kinetin (SEA-BORNR), BAP
  4. เอทิลีนและสารปลดปล่อยเอทิลีน (Etylene and Etylene releasing compounds) สารเอทืลีนเป็นก๊าซ ปัจจุบันพัฒนาเป็นของแข็ง ใช้ในการาเร่งดอกสับปะรด เร่งการสุกของผลไม้ เร่งการไหลของน้ำยาง ทำลายการพักตัว ได้แก่สาร ethephon (EthrelR) และ acetylene (เกิดจากถ่านก๊าซ calcium carbide กับน้ำ)
  5. ชะลอการเจริญเติบโต (Plant Growth Retadants) ไม่พบตามธรรมชาติในพืช ทำงารตรงกันข้ามกับ GA ใช้ชะลอการเจริญเติบโต เช่น ลดความสูงของต้นทำให้ปล้องสั้นลง เพิ่มผลผลิตผัก ป้องกันการหกล้มของธัญพืช ได้แก่ chlomequat (CycocelR), daminozide (AlarR85), mepiquat chlorise (PixR), paxlobutrazol (CultarR)
  6. สารยับยั้งการเจริญเติบโต (Plant Growth Inhibitors) ใช้ควบคุมไม่ให้พืชโตมากเกินไป นอกจากนี้ hydrazide (OZO-MHR) chlofurenol หรือ morphactin, dikegulac-sodium ใช้เพิ่มการแตกกาข้าง ป้องกันการงอกของมันฝรั่ง หอมหัวใหญ่ ป้องกันการเกิดหน่อของยาสูบ และสารอื่นๆ
  • Foleisteine (ErgostimR) กระตุ้นการงอกของเมล็ด เพิ่มการติดผลและเพิ่มผลผลิตของพืชหลายชนิด เช่น ข้าว ข้าวโพด ข้าวสาลี องุ่น ส้ม สตอเบอรี่
  • Glyphosine (PolarisR) เร่งการแก่ของอ้อย เพิ่มน้ำตาล
  • Glyphosate (RoundupR) เร่งการแก่ของอ้อย เพิ่มน้ำตาลเป็นยากำจัดวัชพืชประเภทยาดูดซึม
  • Paraqyet (GranoxomeR) ทำลายส่วนสีเขียว ทำให้ใบร่วง
  • Sodium mono-nitro-quaiacol (AtonikR) ใช้เร่งการเจริญเติบโต เพิ่มการติดผล ป้องกันใบร่วง

ออกซิน (Auxin)
ความรู้พื้นฐานเกี่ยวกับออกซินนั้นเกิดขึ้นจากงานของ Charles Darwin ซึ่งศึกษาเรื่อง Phototropism ซึ่งพืชจะโค้งงอเข้าหาแสง Darwin ทดลองกับต้นกล้าของ Phalaris canariensis และพบว่าโคลีออพไทล์ของพืชชนิดนี้จะตอบสนองต่อการได้รับแสงเพียงด้านเดียวทำให้เกิดการโค้งเข้าหาแสง Darwin สรุปว่าเมื่อต้นกล้าได้รับแสงจะทำให้มี “อิทธิพล” (Influence) บางอย่างส่งผ่านจากส่วนยอดมายังส่วนล่างของโคลีออพไทล์ ทำให้เกิดการโค้งงอเข้าหาแสง ซึ่งนักวิทยาศาสตร์รุ่นต่อมาได้ศึกษาถึง “อิทธิพล” ดังกล่าว
ต่อมา Boysen-Jensen และ Paal ได้ศึกษาและแสดงให้เห็นว่า “อิทธิพล” ดังกล่าวนี้มีสภาพเป็นสารเคมี ซึ่งในสภาพที่โคลีออพไทล์ได้รับแสงเท่ากันทั้งสองด้าน สารเคมีนี้จะเคลื่อนที่ลงสู่ส่วนล่างของโคลีออพไทล์ ในอัตราเท่ากันทุกด้านและทำหน้าที่เป็นสารกระตุ้นการเจริญเติบโต
ในปี ค.ศ. 1926 Went ได้ทำงานทดลองและสามารถแยกสารชนิดนี้ออกจากโคลีออพไทล์ได้ โดยตัดส่วนยอดของโคลีออพไทล์ของข้าวโอ๊ตแล้ววางลงบนวุ้นจะทำให้สารเคมีที่กระตุ้นการเจริญเติบโตไหลลงสู่วุ้น เมื่อนำวุ้นไปวางลงที่ด้านหนึ่งของโคลีออพไทล์ที่ไม่มียอดด้านใดด้านหนึ่งจะทำให้โคลีออพไทล์ดังกล่าวโค้งได้ เขาสรุปว่าสารเคมีได้ซึมลงสู่วุ้นแล้วซึมจากวุ้นลงสู่ส่วนของโคลีออพไทล์ วิธีการดังกล่าวนอกจากเป็นวิธีการแรกที่แยกสารเคมีชนิดนี้ได้แล้ว ยังเป็นวิธีการวัดปริมาณของฮอร์โมนได้ด้วย เป็นวิธีที่เรียกว่า Bioassay
สารเคมีดังกล่าวได้รับการตั้งชื่อว่า ออกซิน ซึ่งในปัจจุบันพบในพืชชั้นสูงทั่วๆ ไป และมีความสำคัญต่อการเจริญเติบโตของพืช สังเคราะห์ได้จากส่วนเนื้อเยื่อเจริญของลำต้น ปลายราก ใบอ่อน ดอกและผล และพบมากที่บริเวณเนื้อเยื่อเจริญ โคลีออพไทด์และคัพภะ รวมทั้งใบที่กำลังเจริญด้วย

auxin

กลไกการทำงานของออกซิน
โดยทั่วไปฮอร์โมนจะสามารถก่อให้เกิดผลต่อการเจริญเติบโตได้ในปริมาณที่ต่ำมาก จึงสรุปกันว่าการทำงานของฮอร์โมนต้องเกี่ยวข้องกับการขยายสัญญาณของฮอร์โมน (Large Amplification) แล้วฮอร์โมนสามารถทำให้เกิดการเปลี่ยนแปลงของโมเลกุลจำนวนมากขึ้นได้ โดยทั่วไปฮอร์โมนจะมีผลต่อการเจริญเติบโตโดยผ่านมาทางการควบคุมการสังเคราะห์โปรตีนหรือกรดนิวคลีอิคควบคุม “pace-setter” ของเอนไซม์และควบคุมการยอมให้สารเข้าออกจากเซลล์ของเยื่อหุ้มเซลล์
กลไกในการทำงานของออกซินในระยะที่ผ่านมาจะมีแนวความคิดเป็นสองอย่าง คือ แนวคิดที่เกี่ยวข้องกับผนังเซลล์เป็นส่วนที่รับผลกระทบของออกซินและขยายตัว ส่วนอีกแนวคิดหนึ่งมุ่งไปที่ผลของออกซินต่อเมตาบอลิสม์ของกรดนิวคลีอิค ในปัจจุบันได้นำสองแนวคิดมาวิเคราะห์ ร่วมกันเพื่อศึกษากลไกในการทำงานของออกซิน และยังศึกษาผลของออกซินต่อเยื่อหุ้มเซลล์ด้วย
การขยายตัวของเซลล์จะสัมพันธ์กับการเปลี่ยนแปลงปริมาณและกิจกรรมของเอนไซม์ โดยที่ออกซินจะมีบทบาทต่อ กระบวนการเมตาบอลิสม์ของกรดนิวคลีอิค โดยการศึกษาจากการเพาะเลี้ยงเนื้อเยื่อที่เป็นไส้ของต้นยาสูบ (Tobacco Pith) ซึ่งจะเจริญไปเป็นกลุ่มเนื้อเยื่อ (Callus) นั้นพบว่ามีปริมาณของ RNA เพิ่มมากขึ้น ทั้งนี้เพราะออกซินจะกระตุ้นให้มีการสังเคราะห์ RNA มากขึ้น แล้วส่งผลไปถึงการเจริญของกลุ่มเนื้อเยื่อ ถ้าหากใช้สารระงับการสังเคราะห์โปรตีนหรือ RNA ความสามารถในการกระตุ้นการเจริญเติบโตของออกซินจะหายไป
การทดลองอีกเรื่องที่ชี้ให้เห็นว่าออกซินกระตุ้นให้มีการสร้าง RNA คือ การใช้นิวเคลียส หรือโครมาตินเลี้ยงไว้ในสารที่เป็นสารเริ่มต้นของ RNA เช่น ATP CTP GTP และ UTP ซึ่งสารเริ่มต้นเหล่านี้จะมีสารกัมมันตรังสีปรากฏอยู่ด้วย RNA ที่เกิดขึ้นมาใหม่จะมีสารกัมมันตรังสีด้วย ซึ่งการที่จะเกิด RNA ใหม่ขึ้นได้นี้เซลล์จะต้องได้รับออกซินก่อนที่นิวเคลียสหรือโครมาตินจะถูกแยกออกจากเซลล์เท่านั้น ซึ่งแสดงให้เห็นว่าออกซินไปกระตุ้นการสังเคราะห์ RNA
ดังนั้นจึงเป็นที่ชัดเจนว่าออกซินมีผลต่อระดับเอนไซม์ โดยผ่านทางการสังเคราะห์ RNA นอกจากนั้นออกซินยังมีผลกระทบต่อกิจกรรมของเอนไซม์โดยตรง เช่น การกระตุ้นให้เอนไซม์เกิดกิจกรรมหรือเปลี่ยนรูปมาอยู่ในรูปที่มีกิจกรรมได้ แต่ไม่ว่าออกซินจะมีผลกระทบต่อเอนไซม์แบบใดก็ตาม นักวิทยาศาสตร์ได้มุ่งความสนใจไปสู่เอนไซม์ที่สัมพันธ์กับกระบวนการขยายตัวของเซลล์ เซลล์พืชจะมีผนังเซลล์อยู่ข้างนอกสุด ดังนั้นการเจริญของเซลล์จะเกิดขึ้นได้เมื่อคุณสมบัติของผนังเซลล์เปลี่ยนไปในทางที่ก่อให้เกิดการขยายตัวของโปรโตพลาสต์ จากความจริงดังกล่าวการศึกษาทางด้านนี้จึงมุ่งไปสู่ผลกระทบของออกซินต่อคุณสมบัติของผนังเซลล์
เซลล์พืชทุกชนิดที่ผ่านขั้นตอนของเนื้อเยื่อเจริญมาแล้วจะผ่านขั้นตอนการ เจริญเติบโต 2 ขั้น คือ การแบ่งเซลล์และการขยายตัวแวคคิวโอขึ้นภายในเซลล์ (Vacuolation) ในการศึกษาการเจริญเติบโตของโคลีออพไทล์ของข้าวโอ๊ต พบว่าการแบ่งเซลล์จะหยุดเมื่อมีความยาว 10 มิลลิเมตร การเจริญเติบโตที่เกิดขึ้นหลังจากนั้นจะเนื่องมาจากการขยายขนาดของเซลล์ ดังนั้นในการศึกษาถึงผลกระทบของออกซินต่อการเจริญเติบโตของพืชจึงเน้นไปที่ผลต่อการขยายตัวของเซลล์ ในระหว่างการขยายขนาดของเซลล์เพราะการขยายตัวของแวคคิวโอ หรืออาจจะเกิดช่องว่างภายในเซลล์ขึ้น ที่ผนังเซลล์จะเกิดการยืดตัวชนิดที่ไม่สามารถหดได้อีก มีการทดลองหลายการทดลองสนับสนุนว่าออกซินเพิ่มการยืดตัวของผนังเซลล์ (Plasticity)
ในระหว่างการขยายตัวของเซลล์นั้น ไม่เพียงแต่ผนังเซลล์ยืดตัวเท่านั้น แต่ยังมีการเพิ่มความหนาของผนังเซลล์เพราะมีสารใหม่ ๆ ไปเกาะด้วย ซึ่งการเจริญดังกล่าวนี้ก็เป็นผลจากการกระตุ้นของออกซิน ซึ่งจะเกิดขึ้นเมื่อการยืดตัวของเซลล์หยุดลงแล้ว

ผนังเซลล์ประกอบด้วยเซลล์ลูโลสไมโครไฟบริลฝังตัวอยู่ในส่วนที่เป็นแมททริกซ์ (Matrix) และโปรตีน ดังนั้นถ้าพิจารณาดูผนังเซลล์จะมีลักษณะเหมือนคอนกรีตเสริมเหล็กโดยเซลลูโลสจะเป็นส่วนของเหล็ก โมเลกุลของเซลลูโลสยึดติดกันด้วยแขนไฮโดรเจน (Hydrogen bond) ในขณะที่ส่วนของแมททริกซ์เกาะกันด้วยแขนโควาเลนท์ (Covalent bond) และในเนื้อเยื่อใบเลี้ยงของพืชใบเลี้ยงคู่ เซลลูโลสเกาะอยู่กับแมททริกซ์โดยแขนไฮโดรเจน ดังนั้นการที่ออกซินจะทำให้เซลล์ยืดตัวนั้นต้องทำลายแขนเหล่านี้เสียก่อน ในปัจจุบันเป็นที่ทราบกันแล้วว่าแม้ว่าการขยายตัวของเซลล์เกี่ยวข้องกับการสังเคราะห์โปรตีนและ RNA รวมทั้งพลังงานจากการหายใจก็ตาม แต่ถ้าให้ออกซินจากภายนอกต่อลำต้นหรือโคลีออพไทล์อัตราการเจริญเติบโตจะเพิ่มขึ้นหลังจากระยะเวลา “lag” เพียง 2-3 นาทีเท่านั้น ซึ่งเป็นไปไม่ได้ที่การเจริญเติบโตถูกเร่งโดยการเปลี่ยนอัตราของการ Transcription และ Translation แต่ดูเหมือนว่าออกซินจะไปมีผลต่อระบบที่ปรากฏอยู่ในพืชแล้ว (Pre-formed System) ดังนั้นจากเหตุผลข้างต้น

การตอบสนองของพืชต่อออกซิน

  1. การตอบสนองในระดับเซลล์ ออกซินทำให้เกิดการขยายตัวของเซลล์ (Cell enlargement) เช่น ทำให้เกิดการขยายตัวของใบ ทำให้ผลเจริญเติบโต เช่น กรณีของสตรอเบอรี่ ถ้าหากกำจัดแหล่งของออกซิน ซึ่งคือส่วนของเมล็ดที่อยู่ภายนอกของผล (ผลแห้งแบบ Achene) จะทำให้เนื้อเยื่อของผลบริเวณที่ไม่มีเมล็ดรอบนอกไม่เจริญเติบโต ออกซินทำให้เกิดการแบ่งเซลล์ได้ในบางกรณี เช่น กระตุ้นการแบ่งเซลล์ของแคมเบียมและกระตุ้นให้เกิดการเปลี่ยนแปลงทางคุณภาพ เช่น กระตุ้นให้เกิดท่อน้ำและท่ออาหาร กระตุ้นให้เกิดรากจากการปักชำพืช เช่น การใช้ IBA ในการเร่งรากของกิ่งชำ แล้วยังกระตุ้นให้เกิดแคลลัส (Callus) ในการเพาะเลี้ยงเนื้อเยื่อ แต่การตอบสนองในระดับเซลล์ที่เกิดเสมอคือ การขยายตัวของเซลล์
  2. การตอบสนองของอวัยวะหรือพืชทั้งต้น
    2.1 เกี่ยวข้องกับการตอบสนองของพืชต่อแสง (Phototropism) Geotropism ดังได้กล่าวมาแล้ว
    2.2 การที่ตายอดข่มไม่ให้ตาข้างเจริญเติบโต (Apical Dominance)
    2.3 การติดผล เช่น กรณีของมะเขือเทศ ออกซินในรูปของ 4 CPA จะเร่งให้เกิดผลแบบ Pathenocarpic และในเงาะถ้าใช้ NAA 4.5 เปอร์เซ็นต์ จะเร่งการเจริญของเกสรตัวผู้ทำให้สามารถผสมกับเกสรตัวเมียได้ ในดอกที่ได้รับ NAA เกสรตัวเมียจะไม่เจริญเพราะได้รับ NAA ที่มีความเข้มข้นสูงเกินไป แต่เกสรตัวผู้ยังเจริญได้ ทำให้การติดผลเกิดมากขึ้น
    2.4 ป้องกันการร่วงของผลโดยออกซินจะยับยั้งไม่ให้เกิด Abcission layer ขึ้นมา เช่น การใช้ 2,4-D ป้องกันผลส้มไม่ให้ร่วง หรือ NAA สามารถป้องกันการร่วงของผลมะม่วง
    2.5 ป้องกันการร่วงของใบ
    2.6 ในบางกรณีออกซินสามารถทำให้สัดส่วนของดอกตัวเมีย และตัวผู้เปลี่ยนไปโดยออกซินจะกระตุ้นให้มีดอกตัวเมียมากขึ้น

จิบเบอเรลลิน (Gibberellins)
การค้นพบกลุ่มของฮอร์โมนพืชที่ปัจจุบันเรียกว่าจิบเบอเรลลินนั้น เกิดประมาณ ปี 1920 เมื่อ Kurosawa นักวิทยาศาสตร์ชาวญี่ปุ่น ศึกษาในต้นข้าวที่เป็นโรค Bakanae หรือโรคข้าวตัวผู้ ซึ่งเกิดจากเชื้อรา Gibberella fujikuroi หรือ Fusarium moniliforme ซึ่งทำให้ต้นข้าวมีลักษณะสูงกว่าต้นข้าวปกติ ทำให้ล้มง่าย จากการศึกษาพบว่า ถ้าเลี้ยงเชื้อราในอาหารเลี้ยงเชื้อเหลวแล้วกรองเอาเชื้อราออกไปเหลือแต่อาหารเลี้ยงเชื้อ เมื่อนำไปราดต้นข้าวจะทำให้ต้นข้าวเป็นโรคได้ จึงเป็นที่แน่ชัดว่า เชื้อราชนิดนี้สามารถสร้างสารบางชนิดขึ้นในต้นพืชหรือในอาหารเลี้ยงเชื้อ ซึ่งกระตุ้นให้ต้นข้าวเกิดการสูงผิดปกติได้ ในปี 1939 ได้มีผู้ตั้งชื่อสารนี้ว่าจิบเบอเรลลิน การค้นพบจิบเบอเรลลิน เกิดขึ้นในช่วงเดียวกับที่พบออกซิน การศึกษาส่วนใหญ่จึงเน้นไปทางออกซิน ส่วนการศึกษาจิบเบอเรลลินในช่วงแรกจะเป็นไปในแง่ของโรคพืช ในการศึกษาขั้นแรกค่อนข้างยากเพราะมักจะมีกรดฟิวซาริค (Fusaric Acid) ปะปนอยู่ซึ่งเป็นสารระงับการเจริญเติบโต ความรู้เกี่ยวกับโครงสร้างและส่วนประกอบทางเคมีของจิบเบอเรลลินนั้นได้รับการศึกษาในปี 1954 โดยนักเคมีชาวอังกฤษซึ่งสามารถแยกสารบริสุทธิ์จากอาหารเลี้ยงเชื้อรา Gibberella fujikuroi และเรียกสารนี้ว่ากรดจิบเบอเรลลิค (Gibberellic Acid)

การให้กรดจิบเบอเรลลิคกับพืชที่สมบูรณ์ทั้งต้น จะเร่งให้เกิดการยืดตัวเพิ่มขึ้นของลำต้นและใบอย่างผิดปกติ การตอบสนองจะปรากฏเด่นชัดเมื่อให้กรดนี้กับพืชที่เตี้ยแคระโดยพันธุกรรม เพราะจะกระตุ้นให้พืชเหล่านี้เจริญสูงตามปกติ กรดจิบเบอเรลลิคที่พบในอาหารเลี้ยงเชื้อรานั้นมีโครงสร้างทางเคมี และกิจกรรมทางชีววิทยาเหมือนกับกรดจิบเบอเรลลิคในพืชปกติทุก ๆ ชนิด (พืชปกติหมายถึงพืชที่ไม่เป็นโรค) มีสารประกอบประเภทนี้จำนวนมากที่แยกเป็นสารบริสุทธิ์ได้จากพืชชั้นสูง ในปัจจุบันมีจิบเบอเรลลินซึ่งเป็นชื่อเรียกทั่ว ๆ ไปของสารประกอบประเภทนี้ ประมาณไม่น้อยกว่า 80 ชนิด ชื่อเรียกสารประกอบชนิดนี้จะตั้งชื่อดังนี้ คือ Gibberellins A1 (GA1), A2, A3 เป็นต้น โดยที่กรดจิบเบอเรลลิค คือ GA3

GA ทุกชนิดจะมีโครงสร้างพื้นฐานของโมเลกุลเป็น Gibberellane Carbon Skeleton ซึ่งจะเหมือนกับกรดจิบเบอเรลลิค จะแตกต่างกันตรงจำนวนและตำแหน่งของกลุ่มที่เข้าแทนที่ในวงแหวนและระดับของความอิ่มตัวของวงแหวน A GA ประกอบด้วยคาร์บอนประมาณ 19-20 อะตอม ซึ่งจะรวมกันเป็นวงแหวน 4 หรือ 5 วงและจะต้องมีกลุ่มคาร์บอกซิลอย่างน้อย 1 กลุ่ม โดยใช้ชื่อย่อว่า GA ซึ่ง GA3 เป็นชนิดที่พบมากและได้รับความสนใจศึกษามากกว่าชนิดอื่นๆ GA เป็นฮอร์โมนที่พบในพืชชั้นสูงทุกชนิด นอกจากนั้นยังพบในเฟิร์น สาหร่าย และเชื้อราบางชนิด แต่ไม่พบในแบคทีเรีย

การเคลื่อนย้ายของจิบเบอเรลลินในต้นพืช
จิบเบอเรลลินสามารถเคลื่อนย้ายหรือเคลื่อนที่ในพืชได้ทั้งทางเบสิพีตัล และ อะโครพีตัล และการเคลื่อนที่ไม่มีโพลาริตี้ การเคลื่อนย้ายเกิดขึ้นทั้งในส่วนของท่ออาหารและท่อน้ำ แต่การเคลื่อนที่ของจิบเบอเรลลินจากยอดอ่อนลงมาสู่ส่วนล่างของลำต้นนั้นไม่ได้เกิดในท่อน้ำ ท่ออาหารเพราะส่วนของยอดอ่อนเป็นส่วนที่ดึงอาหารและธาตุอาหารให้เคลื่อนที่ขึ้นไปแบบ อะโครพีตัล ดังนั้นจิบเบอเรลลินจึงไม่ได้เคลื่อนที่ทางท่ออาหาร และยังไม่ทราบวิถีการเคลื่อนที่แน่ชัด

gibberellins1

กลไกในการทำงานของจิบเบอเรลลิน การศึกษาด้านกลไกในการทำงานของจิบเบอเรลลินเกิดจากการที่พบว่ามีระดับของกิจกรรมของเอนไซม์หลายชนิดมีผลกระทบจากปริมาณของจิบเบอเรลลิน เอนไซม์ซึ่งมีกิจกรรมเพิ่มขึ้นเมื่อได้รับจิบเบอเรลลิน คือ เอนไซม์ แอลฟาและเบตา-อะมัยเลส (a และ b-amylase) โปรตีเอส (Protease) และไรโบนิวคลีเอส (Ribonuclease) ซึ่งพบในเมล็ดข้าวบาร์เลย์ซึ่งกำลังงอก นอกจากนั้นในพืชบางชนิดยังพบว่ากิจกรรมของไนเตรท รีดักเตส (Nitrate Reductase) และ ไรบูโลสฟอสเฟสคาร์บอกซิเลส (Ribulose Phosphate Carboxylase) มีกิจกรรมเพิ่มขึ้นด้วย ใน ต้นอ้อยนั้น พบว่า ผลของจิบเบอเรลลินจะชะลอการสังเคราะห์อินเวอร์เทส (Invertase) และ เพอรอกซิเดส (Peroxidase) ความสนใจในกลไกการทำงานของจิบเบอเรลลิน จึงเน้นไปที่ การศึกษาว่าจิบเบอเรลลินควบคุมกิจกรรมของเอนไซม์ได้เพราะเป็นผลเนื่องมาจากเปลี่ยนแปลงการสังเคราะห์โปรตีนโดย RNA
การศึกษาตัวอย่างของระดับกิจกรรมของเอนไซม์ซึ่งถูกควบคุมโดยจิบเบอเรลลิน ทำกันมากในเอนไซม์ แอลฟา อะมัยเลส ในเมล็ดข้าวบาร์เลย์ ในเมล็ดข้าวบาร์เลย์ที่แห้งที่ยังไม่ดูดซับน้ำจะไม่มีเอนไซม์แอลฟา อะมัยเลสปรากฏอยู่ เอนไซม์นี้จะปรากฏขึ้นและปลดปล่อยออกมาจากชั้นของอะลีโรนของเมล็ด เป็นการตอบสนองต่อจิบเบอเรลลินซึ่งสังเคราะห์จากต้นอ่อนที่กำลังงอก เนื้อเยื่อชั้นอะลีโรนซึ่งแยกจากเมล็ดที่ไม่งอกจะมีกิจกรรมของแอลฟา อะมัยเลส น้อยมาก แต่ถ้านำเนื้อเยื่อนี้ไปแช่ในจิบเบอเรลลินจะทำให้เกิดการเพิ่มกิจกรรมของแอลฟา อะมัยเลสมากขึ้นโดยเกิดขึ้นหลังจากแช่ไว้นาน 8 ชั่วโมงแล้ว การกระตุ้นให้เกิดการสร้างแอลฟา อะมัยเลสนี้ จะชะงักไปเมื่อใช้สารระงับการสังเคราะห์ RNA และโปรตีน รวมอยู่ในสารละลายจิบเบอเรลลิน ซึ่งจากการทดลองดังกล่าวแสดงว่าจิบเบอเรลลินควบคุมกิจกรรมของแอลฟา อะมัยเลส ผ่านทางการสังเคราะห์ RNA สารชะงักการสังเคราะห์ RNA เช่น แอคติโนมัยซิน-ดี (Actinomycin-D) จะชะงักกระบวนการกระตุ้นการสังเคราะห์ RNA 2-3 ชั่วโมง หลังจากเติมจิบเบอเรลลิน ในขณะที่สารชะงักการสังเคราะห์โปรตีน เช่น ไซโคลเฮคซิไมด์ (Cycloheximide) จะระงับการปรากฏของกิจกรรมของแอลฟา อะมัยเลส หลังจากช่วง “lag” เริ่มต้น
กลไกในการทำงานขั้นแรกของจิบเบอเรลลินนั้นจะเปลี่ยนระบบเยื่อหุ้มเซลล์แล้วจึงจะไปมีผลในการกระตุ้นการสังเคราะห์ RNA และโปรตีน นั่นคือในการกระตุ้นระยะสั้นจะเกี่ยวข้องกับระบบเยื่อหุ้มเซลล์ ในระยะยาวจะเกี่ยวข้องกับการสังเคราะห์ RNA และโปรตีน กลไกที่เกี่ยวข้องกับการเปลี่ยนระบบของเยื่อหุ้ม คือ เพิ่มการสังเคราะห์เยื่อหุ้มทำให้เกิดเอนโดพลาสมิคเรตติคิวลัม มากขึ้น และกระตุ้นการสร้างเวสซิเคิลซึ่งมีเอนไซม์อยู่ภายใน นอกจากนั้นยังกระตุ้นให้มีการปลดปล่อย แอลฟา อะมัยเลส ผ่านเยื่อหุ้มเซลล์ออกมา

gibberellins

บทบาทของจิบเบอเรลลินที่มีต่อพืช

  1. กระตุ้นการเจริญเติบโตของพืชทั้งต้น จิบเบอเรลลินมีคุณสมบัติพิเศษ ซึ่งสามารถกระตุ้นการเจริญเติบโตของพืชทั้งต้นได้โดยทำให้เกิดการยืดตัวของเซลล์ ซึ่งผลนี้จะต่างจากออกซินซึ่งสามารถกระตุ้นการเจริญเติบโตของชิ้นส่วนของพืชได้ พืชบางชนิดอาจจะไม่ตอบสนองต่อจิบเบอเรลลิน อาจจะเป็นเพราะว่าในพืชชนิดนั้นมีปริมาณจิบเบอเรลลินเพียงพอแล้ว จิบเบอเรลลินสามารถกระตุ้นการยืดยาวของช่อดอกไม้บางชนิดและทำให้ผลไม้มีรูปร่างยาวออกมา เช่น องุ่น และแอปเปิล กะหล่ำปลีซึ่งเจริญในลักษณะต้นเตี้ยเป็นพุ่ม (Rosette) มีปล้องสั้นมาก เมื่อให้ GA3 กับต้นกะหล่ำปลีดังกล่าวจะทำให้สูงขึ้นถึง 2 เมตรได้ ถั่วพุ่มที่ได้รับ GA จะกลายเป็นถั่วเลื้อยได้ พืชซึ่งมีต้นเตี้ยทางพันธุกรรม เช่น ข้าว ข้าวโพด ถั่ว แตงกวาและแตงโมสามารถแสดงลักษณะปกติได้เมื่อได้รับ GA3 ในข้าวโพดแคระนั้นพบว่าความผิดปกติเกิดจากยีนส์ควบคุม ซึ่งอาจจะเกี่ยวพันกับวิถีในการสังเคราะห์จิบเบอเรลลิน ส่วนข้าวโพดปกติหากได้รับจิบเบอเรลลินจะไม่สามารถสูงขึ้นได้อีก ดังนั้นในกรณีข้าวโพดการแคระเกิดจากมีปริมาณจิบเบอเรลลินในต้นน้อยเกินไป แต่อาการแคระของพืชบางชนิด เช่น Japanese Morning Glory พบว่ามีจิบเบอเรลลินมากพอแล้ว แต่เมื่อได้รับ จิบเบอเรลลินเพิ่มก็จะสูงขึ้นได้ ในกรณีนี้อาจจะเป็นเพราะในต้นมีปริมาณของสารระงับการ เจริญเติบโตอยู่สูง
  2. กระตุ้นการงอกของเมล็ดที่พักตัวและตาที่พักตัว ตาของพืชหลายชนิดที่เจริญอยู่ในเขตอบอุ่นจะพักตัวในฤดูหนาว เมล็ดของพืชหลายชนิดมีพฤติกรรมเช่นนี้ด้วย ซึ่งการพักตัวจะลดลงจนหมดไป เมื่อได้รับความเย็นเพียงพอ การพักตัวของเมล็ดและตา อันเนื่องมาจากต้องการอุณหภูมิต่ำ วันยาว และต้องการแสงสีแดงจะหมดไปเมื่อได้รับจิบเบอเรลลิน
  3. การแทงช่อดอก การออกดอกของพืชเกี่ยวข้องกับปัจจัยหลายอย่าง เช่น อายุ และสภาพแวดล้อม จิบเบอเรลลินสามารถแทนความต้องการวันยาวในพืชบางชนิดได้ และยังสามารถทดแทนความต้องการอุณหภูมิต่ำ (Vernalization) ในพืชพวกกะหล่ำปลี และแครอท
  4. จิบเบอเรลลิน สามารถกระตุ้นการเคลื่อนที่ของอาหารในเซลล์สะสมอาหาร หลังจากที่เมล็ดงอกแล้ว เพราะรากและยอดที่ยังอ่อนตัวเริ่มใช้อาหาร เช่น ไขมัน แป้ง และโปรตีน จากเซลล์สะสมอาหาร จิบเบอเรลลินจะกระตุ้นให้มีการย่อยสลายสารโมเลกุลใหญ่ให้เป็นโมเลกุลเล็ก เช่น ซูโครสและกรดอะมิโน ซึ่งเกี่ยวพันกับการสังเคราะห์เอนไซม์หลายชนิดดังกล่าวข้างต้น
  5. กระตุ้นให้เกิดผลแบบ Parthenocarpic ในพืชบางชนิด เปลี่ยนรูปร่างของใบพืชบางชนิด เช่น English Ivy และทำให้พืชพัฒนาการเพื่อทนความเย็นได้
  6. พืชที่มีดอกตัวผู้ และตัวเมียแยกกันไม่ว่าจะต้นเดียวกัน หรือแยกต้นก็ตาม จิบเบอเรลลินสามารถเปลี่ยนเพศของดอกได้ จิบเบอเรลลินมักเร่งให้เกิดดอกตัวผู้ ส่วนออกซิน เอทธิลีน และไซโตไคนิน มักจะเร่งให้เกิดดอกตัวเมีย ในแตงกวาดอกล่าง ๆ มักเป็นดอกตัวผู้ และดอกบนเป็นดอกตัวเมีย การให้สารอีธีฟอนจะเร่งให้เกิดดอกตัวเมียขึ้น

ไซโตไคนิน (Cytokinins)
การค้นพบฮอร์โมนในกลุ่มนี้เริ่มจากการศึกษาการเพาะเลี้ยงเนื้อเยื่อ โดยในปี ค.ศ. 1920 Haberlandt ได้แสดงให้เห็นว่ามีสารชนิดหนึ่งเกิดอยู่ในเนื้อเยื่อพืชและกระตุ้นให้เนื้อเยื่อพาเรนไคมาในหัวมันฝรั่งกลับกลายเป็นเนื้อเยื่อเจริญได้ ซึ่งแสดงว่าสารชนิดนี้สามารถกระตุ้นให้มีการแบ่งเซลล์ ต่อมามีการพบว่าน้ำมะพร้าวและเนื้อเยื่อของหัวแครอทมีคุณสมบัติในการกระตุ้นการแบ่งเซลล์เช่นกัน
นักวิทยาศาสตร์หลายท่าน เช่น Skoog และ Steward ทำการทดลองในสหรัฐอเมริกา โดยศึกษาความต้องการสิ่งที่ใช้ในการเจริญเติบโตของกลุ่มก้อนของเซลล์ (Callus) ซึ่งเป็นเซลล์ที่แบ่งตัวอย่างรวดเร็ว แต่ไม่มีการเปลี่ยนแปลงทางคุณภาพเกิดขึ้นของ pith จากยาสูบและรากของแครอท จากผลการทดลองนี้ทำให้รู้จักไซโตไคนินในระยะปี ค.ศ. 1950 ซึ่งเป็นฮอร์โมนพืชที่จำเป็นต่อการแบ่งเซลล์และการเปลี่ยนแปลงทางคุณภาพของเนื้อเยื่อ ในปัจจุบันพบว่าไซโตไคนิน ยังเกี่ยวข้องกับการเสื่อมสภาพ (Senescence) และการควบคุมการเจริญของตาข้างโดยตายอด (Apical Dominance)
จากการศึกษาของ Skoog โดยเลี้ยงเนื้อเยื่อ pith ของยาสูบ พบว่าการที่เนื้อเยื่อจะเจริญต่อไปได้นั้นจะต้องมีอาหารและฮอร์โมน เช่น ออกซิน โดยถ้าให้ออกซินในอาหารจะมีการเจริญของเนื้อเยื่อนั้นน้อยมาก เซลล์ขนาดใหญ่เกิดขึ้นโดยไม่แบ่งเซลล์ นอกจากนั้นจะไม่เกิดการเปลี่ยนแปลงทางคุณภาพ อย่างไรก็ตามหากเพิ่มพิวรีน เบส (Purine Base) ชนิดอะดีนีน (Adenine) ลงไปในอาหารรวมกับ IAA พบว่า เนื้อเยื่อจะกลายเป็นกลุ่มเซลล์ (Callus) ถ้าใส่อะดีนีนอย่างเดียวรวมกับอาหาร เนื้อเยื่อจะไม่สร้างกลุ่มเซลล์ขึ้นมา ดังนั้นจึงมีปฏิสัมพันธ์ (Interaction) ระหว่าง อะดีนีน และ IAA ซึ่งกระตุ้นให้เกิดการแบ่งเซลล์ขึ้น อะดีนีนเป็นพิวรีนเบส ซึ่งมีสูตรเป็น 6-อะมิโนพิวรีน (6-aminopurine) และปรากฏอยู่ในสภาพธรรมชาติโดยเป็นส่วนประกอบของกรด นิวคลีอิค
ในปี 1955 Miller ได้แยกสารอีกชนิดหนึ่งซึ่งมีคุณสมบัติคล้ายคลึงแต่มีประสิทธิภาพดีกว่าอะดีนีน ซึ่งได้จากการสลายตัวของ DNA ของสเปิร์มจากปลาแฮร์ริง สารชนิดนี้ คือ 6-(furfuryl-amino) purine ซึ่งมีสูตรโครงสร้างคล้ายอะดีนีน เนื่องจากสารชนิดนี้สามารถกระตุ้นให้เกิดการแบ่งเซลล์โดยร่วมกับออกซิน จึงได้รับชื่อว่าไคเนติน (Kinetin)
ไคเนติน เป็นสารที่ไม่พบตามธรรมชาติในต้นพืช แต่เป็นสารสังเคราะห์ ต่อมาได้มีการค้นพบไซโตไคนินสังเคราะห์อีกหลายชนิด สารสังเคราะห์ที่มีกิจกรรมของไซโตไคนินสูงที่สุดคือ เบนซิลอะดีนีน (Benzyladenine หรือ BA) และเตตระไฮโดรไพรานีลเบนซิลอะดีนีน (tetrahydropyranylbenzyladenine หรือ PBA)
cytokinins

กลไกการทำงานของไซโตไคนิน
ไซโตไคนินมีบทบาทสำคัญคือควบคุมการแบ่งเซลล์ และไซโตไคนินที่เกิดในสภาพธรรมชาตินั้นเป็นอนุพันธ์ของอะดีนีนทั้งสิ้น ดังนั้นงานวิจัยเกี่ยวกับกลไกการทำงานจึงมีแนวโน้มในความสัมพันธ์กับกรดนิวคลีอิค กลไกการทำงานของไซโตไคนินยังไม่เด่นชัดเหมือนกับออกซิน และจิบเบอเรลลิน แต่ไซโตไคนินมีผลให้เกิดการสังเคราะห์ RNA และโปรตีนมากขึ้นในเซลล์พืช ผลการทดลองบางรายงานกล่าวว่า หลังจากให้ไซโตไคนินกับเซลล์พืชแล้วจะเพิ่มปริมาณของ m-RNA, t-RNA และ r-RNA
การศึกษากลไกการทำงานของไซโตไคนิน ในช่วงทศวรรษ 1960 ได้เน้นไปในแง่ที่ว่าไซโตไคนินอาจจะส่งผลของฮอร์โมนผ่าน t-RNA บางชนิด เนื่องจากมีการค้นพบว่ามีกลุ่มไซโตไคนินปรากฏอยู่ร่วมกับ t-RNA หลายชนิด ทั้ง t-RNA ของซีรีน (Serine) และไธโรซีน (Thyrosine) มี อะดีนีนเบสซึ่งมี side chain และมีคุณสมบัติเป็นไซโตไคนินซึ่งมีประสิทธิภาพสูง ยิ่งไปกว่านั้นในกรณี อะดีนีนซึ่งมีคุณสมบัติของไซโตไคนินจะอยู่ถัดจากแอนติโคดอน (Anticodon) ของ t-RNA จึงเป็นที่เชื่อกันว่าการปรากฏของไซโตไคนินบน t-RNA อาจจะจำเป็นต่อการเกาะกันของโคดอน (Codon) และแอนติโคดอนระหว่าง m-RNA และ t-RNA บนไรโบโซม ซึ่งสมมุติฐานที่ว่าไซโตไคนินควบคุมกระบวนการ Translation ผ่านทาง t-RNA จึงได้รับความเชื่อกันมากในขณะนั้น
อย่างไรก็ตามสมมุติฐานนี้ ในเวลาต่อมาได้รับการวิจารณ์อย่างรุนแรง เช่นในการสังเคราะห์ t-RNA ตามปกตินั้น อาจจะเกิดการเปลี่ยนรูปของเบส หลังจากที่มีโพลีนิวคลีโอไทด์ (Polynucleotide) แล้ว ซึ่งหมายความว่า side chain บนตำแหน่งที่ 6 ของอะดีนีนนั้นเกิดขึ้นหลังจากที่อะดีนีนได้อยู่บน t-RNA เรียบร้อยแล้ว ซึ่งเป็นไปไม่ได้ที่ไคเนตินและซีเอตินหรือไซโตไคนินอื่นๆ จะเข้าร่วมกับ t-RNA ในรูปที่เป็นโมเลกุลที่สมบูรณ์ หลักฐานอีกข้อที่ไม่สนับสนุนสมมุติฐานนี้คือ การพบว่า t-RNA ของเมล็ดข้าวโพดซึ่งมีซีส-ซีเอติน (Cis-Zeatin) ในขณะที่ไซโตไคนินที่เกิดในธรรมชาติในเมล็ดเดียวกันเป็นทรานส์-ซีเอติน (trans-Zeatin) ดังนั้นจึงเป็นการยากที่จะเชื่อว่าไซโตไคนินเป็นสารเริ่มต้นของการสังเคราะห์ t-RNA แม้ว่างานทดลองจะยังสับสนและขัดแย้งกัน แต่โดยทั่วไปการรวมของไซโตไคนินเข้าไปใน t-RNA นั้นเกิดในอัตราที่ต่ำมากจนไม่น่าเชื่อสมมุติฐานดังกล่าว
งานวิจัยได้เปลี่ยนแนวและสนับสนุนว่าไซโตไคนินอาจจะทำงานโดยควบคุม กิจกรรมของเอนไซม์โดยตรงมากกว่าที่จะเกี่ยวกับการสังเคราะห์เอนไซม์ ไซโตไคนินมีอิทธิพลต่อเอนไซม์หลายชนิด เช่น ไคเนส (Kinases) ที่ใช้ในกระบวนการหายใจ นอกจากนั้นกิจกรรมของเอนไซม์ที่ใช้ในกระบวนการสังเคราะห์แสงก็เพิ่มขึ้น

ผลของไซโตไคนิน

  1. กระตุ้นให้เกิดการแบ่งเซลล์และการเปลี่ยนแปลงทางคุณภาพใน tissue culture โดยต้องใช้ร่วมกับ Auxin ในการเลี้ยงเนื้อเยื่อพืชนั้นหากให้ฮอร์โมน ไซโตไคนินมากกว่าออกซิน จะทำให้เนื้อเยื่อนั้นเจริญเป็น ตา ใบ และลำต้น แต่ถ้าหากสัดส่วนของออกซินมากขึ้นกว่าไซโตไคนินจะทำให้เนื้อเยื่อนั้นสร้างรากขึ้นมา การ differentiate ของตาในการเพาะเลี้ยงเนื้อเยื่อจาก Callus จากส่วนของลำต้นนั้น auxin จะระงับ และไซโตไคนินนั้นจะกระตุ้นการเกิด และต้องมีความสมดุลระหว่างไซโตไคนินและออกซินชิ้นเนื้อเยื่อจึงจะสร้างตาได้
  2. ชะลอกระบวนการเสื่อมสลาย เช่น กรณีของใบที่เจริญเต็มที่แล้วถูกตัดออกจากต้น คลอโรฟิลล์ RNA และโปรตีนจะเริ่มสลายตัวเร็วกว่าใบที่ติดอยู่กับต้น แม้จะมีการให้อาหารกับใบเหล่านี้ก็ตาม ถ้าหากเก็บใบเหล่านี้ไว้ในที่มืดการเสื่อมสลายยิ่งเกิดเร็วขึ้น อย่างไรก็ตามหากใบเหล่านี้เกิดรากขึ้นที่โคนใบหรือก้านใบ จะทำให้การเสื่อมสลายเกิดช้าลง เพราะไซโตไคนินผ่านขึ้นมาจากรากทางท่อน้ำ อย่างไรก็ตามการให้ไซโตไคนินกับใบพืชเหล่านี้จะชะลอการเสื่อมสลายได้เหมือนกับรากเช่นกัน นอกจากนั้นไซโตไคนินยังทำให้มีการเคลื่อนย้ายอาหารจากส่วนอื่นมายังส่วนที่ได้รับไซโตไคนินได้ เช่น กรณีของใบอ่อนซึ่งมีไซโตไคนินมากกว่าใบแก่จะสามารถดึงอาหารจากใบแก่ได้
    ในกรณีเชื้อราที่ทำให้เกิดโรคราสนิม ซึ่งทำให้เกิดการตายของเนื้อเยื่อแล้วบริเวณเนื้อเยื่อที่ตายจะเกิดสีเขียวล้อมรอบขึ้นมาซึ่งบริเวณสีเขียวนี้มีแป้งสะสมมากแม้กระทั่งส่วนอื่นๆ ของใบตายไปแล้ว ส่วนสีเขียวอาจจะยังคงอยู่ ลักษณะนี้เรียกว่า Green Island ซึ่งบริเวณนี้จะมี ไซโตไคนินสูง คาดว่าเชื้อราสร้างขึ้นมาเพื่อดึงอาหารมาจากส่วนอื่น
  3. ทำให้ตาข้างแตกออกมาหรือกำจัดลักษณะ Apical Dominanceได้ การเพิ่ม ไซโตไคนินให้กับตาข้างจะทำให้แตกออกมาเป็นใบได้ ทั้งนี้เพราะตาข้างจะดึงอาหารมาจากส่วนอื่นทำให้ตาข้างเจริญได้ เชื้อจุลินทรีย์บางชนิดสามารถสร้างไซโตไคนินกระตุ้นให้พืชเกิดการแตกตาจำนวนมากมีลักษณะผิดปกติ เช่น โรค Fascination นอกจากนั้นยังเร่งการแตกหน่อของพืช เช่น บอน และโกสน
  4. ทำให้ใบเลี้ยงคลี่ขยายตัว กรณีเมล็ดของพืชใบเลี้ยงคู่งอกในความมืด ใบเลี้ยงจะเหลืองและเล็ก เมื่อได้รับแสงจึงจะขยายตัวขึ้นมา ซึ่งเป็นการควบคุมของไฟโตโครม แต่ถ้าหากให้ไซโตโคนินโดยการตัดใบเลี้ยงมาแช่ในไซโตไคนิน ใบเลี้ยงจะคลี่ขยายได้เช่นกัน ลักษณะดังกล่าวพบกับ แรดิช ผักสลัด และแตงกวา ออกซินและจิบเบอเรลลินจะไม่ให้ผลดังกล่าว
  5. ทำให้เกิดการสร้างคลอโรพลาสต์มากขึ้น ซึ่งเป็นการเปลี่ยนแปลงทางคุณภาพอย่างหนึ่ง เช่น เมื่อ Callus ได้รับแสงและไซโตไคนิน Callus จะกลายเป็นสีเขียว เพราะพลาสติคเปลี่ยนเป็นคลอโรพลาสต์ได้ โดยการเกิดกรานาจะถูกกระตุ้นโดยไซโตไคนิน
  6. ทำให้พืชทั้งต้นเจริญเติบโต
  7. กระตุ้นการงอกของเมล็ดพืชบางชนิด

กรดแอบซิสิค (Abscisic Acid) หรือ ABA
ในการศึกษาถึงการร่วงของใบ การพักตัวของตาและเมล็ดในช่วงปี ค.ศ. 1950-1960 นั้น ชี้ให้เห็นว่าเป็นไปได้ว่ามีสารระงับการเจริญปรากฏอยู่ในต้นพืช โครงสร้างของสารเคมี ดังกล่าวถูกค้นพบในปี 1965 ในผล และใบของฝ้าย สารเคมีดังกล่าวได้รับการตั้งชื่อว่า กรดแอบซิสิค หรือ ABA และพบว่าเป็นสารจำพวกเซสควิเทอร์พีนอยด์
โมเลกุลของ ABA ประกอบด้วย asymmetric carbon atom จึงสามารถแสดงลักษณะของ optical isomerism ได้ อย่างไรก็ตามในสภาพธรรมชาติ ABA จะเกิดเพียงชนิด (+) enantiomorph เท่านั้น ABA ยังแสดงลักษณะ geometric isomerism ได้ด้วย side chain จะเป็น trans รอบๆ คาร์บอนตำแหน่งที่ 5 เสมอ แต่โมเลกุลสามารถเป็นได้ทั้ง cis- หรือ trans รอบๆ คาร์บอนตำแหน่งที่ 2 ABA ส่วนใหญ่ที่พบในพืชจะเป็น (+)-2-cis ABA แม้ว่าจะพบ (+)-2-trans ABA บ้างแต่น้อยมาก ดังนั้นรูป (+)-2-cis ของ ABA จึงมักหมายถึง ABA ทั่ว ๆ ไป
ABA ถูกแยกออกจากพืชหลายชนิดทั้งแองจิโอสเปิร์มส์ จิมโนสเปิร์มส์ เฟินและมอส (Angiosperms, Gymnosperms, Ferns และ Mosses)

กลไกในการทำงานของ ABA
ABA มีกลไกการทำงานคล้ายคลึงกับฮอร์โมนพืชชนิดอื่นๆ คือจะเปลี่ยนระดับและกิจกรรมของเอนไซม์ในรูปเมตาบอลิสม์ของกรดนิวคลีอิค ABA สามารถชะงักการปรากฏของแอลฟาอะมัยเลสในเซลล์อะลีโรนของข้าวบาร์เลย์ได้
ในทำนองเดียวกันกลไกของการทำงานของ ABA คล้ายคลึงกับฮอร์โมนชนิดอื่นๆ คือ เกี่ยวข้องกับการควบคุมเมตาบอลิสม์ของกรดนิวคลีอิค และการสังเคราะห์โปรตีน ซึ่งการควบคุมอาจจะเกิดได้หลายวิธี เช่น ABA กระตุ้นกิจกรรมของเอนไซม์ไรโบนิวคลีเอส (Ribonuclease) หรือ RNase ซึ่งจะทำลาย RNA ทำให้อัตราการสังเคราะห์โปรตีนลดลง แต่อย่างไรก็ตามมีข้อขัดแย้งว่า ABA สามารถลดการสังเคราะห์ RNA ลงได้ภายใน 3 ชั่วโมง หลังจากที่พืชได้รับ ABA แต่จริงๆ แล้วกิจกรรมของ RNase จะเพิ่มขึ้น หลังจากนั้น 8 ชั่วโมง ซึ่งชี้ให้เห็นว่าผลของ ABA ในชั้นต้นไม่ใช่การสังเคราะห์ RNase แต่ยังไม่ทราบแน่ชัดว่าคืออะไร
ในทางตรงกันข้ามกับสภาวะที่ ABA ก่อให้เกิดการลดปริมาณ RNA รวมของเซลล์ มีการพบว่าในเนื้อเยื่ออะลีโรนของข้าวบาร์เลย์นั้นพบว่า การสังเคราะห์แอลฟาอะมัยเลสถูกหยุดชะงัก โดย ABA ไม่มีผลต่อ RNA รวม หรือการสังเคราะห์โปรตีนรวมเลย ผลของ ABA ที่มีต่อแอลฟา อะมัยเลส อาจจะไม่ผ่านมาทางการสังเคราะห์ m-RNA ซึ่งแปลรหัสเพื่อสร้างแอลฟาอะมัยเลสด้วย คาดว่า ABA จะมีผลต่อ regulator RNA ที่ใช้ในกระบวนการ Translation ของแอลฟา อะมัยเลส
ถึงแม้ว่าจะทราบกันดีว่า ABA มีผลต่อการสังเคราะห์โปรตีน อย่างไรก็ตามมีผลของ ABA หลายกรณีที่เกิดขึ้นเร็วเกินกว่าที่จะอธิบายโดยกระบวนการนี้ เช่น การปิดของปากใบ ซึ่งเกิดภายในไม่กี่นาทีที่ได้รับ ABA นอกจากนั้นการยืดตัวของโคลีออพไทล์ที่ได้รับออกซิน จะหยุดชะงักภายใน 2-3 นาที เมื่อได้รับ ABA จึงสรุปได้ว่า ABA มีผลต่อพืชโดยไม่ผ่านเมตาบอลิสม์ของ RNA ได้

ความสัมพันธ์ของ ABA กับการขาดน้ำ
ปริมาณของ ABA ในต้นพืชจะมีความสัมพันธ์โดยตรงกับค่า Water potential ของพืช ปริมาณ ABA ในต้น Ambrosia artemisifolia จะเพิ่มขึ้นทันทีเมื่อใบพืชชนิดนี้มี Water potential เป็น -10 บาร์ ส่วนในข้าวโพดจะอยู่ที่ -12 บาร์ ส่วนในถั่วปริมาณ ABA จะสูงขึ้นเมื่อ Water potential เท่ากับ -7 บาร์
การขาดน้ำทำให้เยื่อหุ้มคลอโรพลาสต์มี Permeability เพิ่มขึ้น ส่งผลให้เกิดการ รั่วไหลของ ABA จากคลอโรพลาสต์ซึ่งเป็นบริเวณที่สะสม ABA ของใบปกติ การลดปริมาณของ ABA ในคลอโรพลาสต์จะกระตุ้นให้มีการสังเคราะห์ ABA เพิ่มขึ้น เมื่อพืชได้รับน้ำเยื่อหุ้มคลอโรพลาสต์จะไม่ยอมให้ ABA รั่วไหลออกมา ทำให้เกิดการหยุดสังเคราะห์ ABA ในคลอโรพลาสต์ ซึ่งเป็น Feedback mechanism
ABA กระตุ้นให้เกิดการปิดของปากใบได้เพราะ ABA จะระงับการผ่านของ K+ เข้าสู่ Guard cell และกระตุ้นให้ Matate รั่วไหลออกจาก Guard cell และนอกจากนั้น ABA ยังระงับการแลกเปลี่ยนประจุ H+ และ K+ ของ Guard cell ทำให้ปริมาณของ K+ และ Malate ใน Guard cell มีน้อย ทำให้ค่า Water potential สูงขึ้น น้ำจึงไหลออกจาก Guard cell ทำให้ปากใบปิดได้

ผลของ ABA ต่อพืช

  1. ลดการคายน้ำโดยกระตุ้นให้ปากใบปิด ซึ่งพืชตอบสนองได้ภายใน 1-15 นาที หลังจากได้รับ ABA ในพืชที่ขาดน้ำจะมีปริมาณ ABA เพิ่มขึ้นอย่างรวดเร็ว ซึ่งเป็นการลดการคายน้ำของพืช
  2. กระตุ้นให้เกิดการพักตัวของตา ซึ่งจะเกิดกับพืชเขตอบอุ่น พบว่าเมื่อให้ ABA กับตาที่กำลังเจริญเติบโต จะทำให้ตาชะงักการเจริญเติบโตและเข้าสู่การพักตัวตามปกติ การให้ GA จะลดผลของ ABA ที่ทำให้ตาพักตัวได้
  3. การร่วงของใบและดอก เช่น ในฝ้าย ผลแก่ที่ร่วงเองจะมี ABA สูงมาก
  4. เร่งกระบวนการเสื่อมสภาพของใบ

เอทธิลีน (Ethylene)
เป็นฮอร์โมนพืชซึ่งควบคุมการเจริญเติบโตในหลายแง่ เช่น การพัฒนา การเสื่อมสลาย ขึ้นอยู่กับเวลาและสถานที่ ซึ่งเกิดเอทธิลีนขึ้นมา ผลของเอทธิลีนมีทั้งในแง่ที่เป็นประโยชน์หรือเป็นโทษต่อพืช เอทธิลีนเป็นฮอร์โมนที่มีสภาพเป็นก๊าซซึ่งรู้จักกันมานานแล้ว จากการบ่มผลไม้ ในปี 1934 ได้มีการพิสูจน์ให้เห็นว่าเอทธิลีนเป็นก๊าซที่สังเคราะห์ขึ้นโดยพืช และสามารถเร่งกระบวนการสุกได้ ต่อมาพบว่าการก่อกองไฟใกล้ ๆ สวนมะม่วงและสับปะรดจะกระตุ้นให้ออกดอกได้ ซึ่งสารที่ทำให้เกิดการออกดอก คือ เอทธิลีนนั่นเอง เอทธิลีนเป็นฮอร์โมนพืชที่สำคัญในด้านหลังเก็บเกี่ยวด้วย
ต่อมาพบว่า ดอก เมล็ด ใบ และรากพืชสามารถสังเคราะห์เอทธิลีนได้ เช่น ใน เซเลอรี่ พันธุ์ซึ่งต้นขาวเอง (Self blanching) พบว่า เซเลอรี่สามารถสร้างเอทธิลีนมากำจัดสีเขียวที่ก้านได้ นอกจากนั้นในปี 1935 ยังพบว่า การให้ออกซินกับพืชอาจจะกระตุ้นให้พืชสร้างเอทธิลีนได้ ซึ่งเป็นคำอธิบายได้ชัดเจนสำหรับกรณีที่เมื่อให้ออกซินกับพืชแล้วพืช ตอบสนองเหมือนกับได้รับเอทธิลีน ออกซินกับเอทธิลีนนั้นเมื่อให้กับพืชมักจะให้ผลส่งเสริมกัน ส่วนของพืชที่พบเอทธิลีนมากคือ ใบแก่ ผลไม้สุก และเนื้อเยื่อที่อยู่ภายใต้สภาพความเครียด (Stress)

ethylenestrawberry-day-0-4

กลไกการทำงานของเอทธิลีน
จากการศึกษาพบว่า เอทธิลีนจะก่อให้เกิดผลต่อการเจริญเติบโตของพืช โดยการรวมกับ receptor site ซึ่งมีโลหะรวมอยู่ในโมเลกุลด้วย และคาดว่าโลหะดังกล่าวคือทองแดงและ analogues ของเอทธิลีนจะสามารถแข่งขันเข้ารวมกับ receptor site และก่อให้เกิดผลคล้ายคลึงกับผลของเอทธิลีน บริเวณที่เอทธิลีนรวมกับ receptor site นั้น คาดว่าอยู่บริเวณเยื่อหุ้มเซลล์หลังจากที่รวมกับ receptor แล้วจะทำให้ receptor สามารถกระตุ้นให้เกิดการตอบสนองขึ้น ซึ่งจะนำไปสู่การตอบสนองขั้นต่อไป
การที่เนื้อเยื่อพืชได้รับเอทธิลีนจะมีการเปลี่ยนแปลงทั้งด้านปริมาณและคุณภาพของเอนไซม์ ดังนั้นจึงเป็นไปได้ว่าเอทธิลีนจะควบคุม RNA ให้สังเคราะห์โปรตีน มีเอนไซม์หลายชนิดมีกิจกรรมเพิ่มขึ้นหลังจากที่ได้รับเอทธิลีนแล้ว เช่น เซลลูเลส (Cellulase) เพอร์ออกซิเดส (Peroxidase) ฟีนีลอะลานีน แอมโมเนีย ไลเอส (Phenylalanine ammonia lyase) และฟอสฟาเตส (Phosphatase) ตัวอย่างของการกระตุ้นให้เกิดเซลลูเลสที่เด่นชัดที่สุดคือการเกิดรอยแยกขึ้นที่ก้านใบกับลำต้น หรือกิ่งในระหว่างการร่วงของใบซึ่งเกิดจากการได้รับเอทธิลีน และการเพิ่มขึ้นของเซลลูเลสเกิดจากการกระตุ้นของเอทธิลีน แต่อย่างไรก็ตามการกระตุ้นการเกิดการร่วงของใบโดยเอทธิลีนนั้นรวดเร็วมากเกินกว่ากลไกของการสังเคราะห์โปรตีน ดังนั้นจึงเป็นไปได้ว่าเอทธิลีนกระตุ้นให้เซลลูเลสที่ปรากฏอยู่ในเซลล์แล้ว ปลดปล่อยออกมายังผนังเซลล์ทำให้เกิดการแยกของเซลล์และใบร่วง
ผลของเอทธิลีนที่เกิดอย่างรวดเร็วนั้น จะไม่สามารถหยุดยั้งด้วย สารระงับการสร้าง RNA หรือโปรตีน เช่น แอคติโนมัยซิน ดี และไซโคเฮกซิไมด์
การที่เอทธิลีนละลายได้ดีมากในไขมัน จึงคาดว่า receptor site ก็อยู่ร่วมกับเยื่อหุ้มเซลล์ ซึ่งลักษณะดังกล่าวจึงทำให้เอทธิลีนมีผลต่อการยอมให้สารเข้าออกจากเยื่อหุ้มเซลล์ด้วย แต่กลไกเหล่านี้ยังสลับซับซ้อนและไม่ทราบเด่นชัดนัก ดังนั้นกลไกการทำงานของเอทธิลีนในระยะสั้นอาจจะเกี่ยวข้องกับเยื่อหุ้มเซลล์ ส่วนในระยะยาวจะเกี่ยวข้องกับการสังเคราะห์โปรตีน

ethylenestrawberry-day-20-37

ผลของเอทธิลีนต่อพืช

  1. กระตุ้นให้ผลไม้สุก ดังนั้นอาจจะเรียกเอทธิลีนว่า Ripening hormone และใช้ในการบ่มผลไม้ในทางการค้า
  2. กระตุ้นการเปลี่ยนแปลงทางคุณภาพ เช่น กระตุ้นให้เกิด Abcission zone ขึ้น ทำให้ใบและกลีบดอกร่วงได้ กระตุ้นให้เกิดการเปลี่ยนแปลงทางคุณภาพของราก และลำต้น รวมทั้งกระตุ้นการออกดอกของพืช เช่น สับปะรด กระตุ้นให้เกิด Adventitious root
  3. กระตุ้นให้พืชออกจากการพักตัว เช่น กรณีของมันฝรั่ง
  4. กระตุ้นให้เกิดดอกตัวเมียมากขึ้นในพืช Dioeciousฮอร์โมนที่กล่าวมาแล้วทั้งหมดนี้ ในปัจจุบันได้นำมาใช้ในทางการเกษตรกันอย่างแพร่หลาย ส่วนสารควบคุมการเจริญเติบโตที่นำมาใช้ประโยชน์ในปัจจุบันก็มีหลายชนิด เช่น Paclobutrazol ซึ่งใช้ควบคุมความสูงของพืช ป้องกันการหักล้มของธัญพืชลดความสูงของไม้ประดับ และยังกระตุ้นให้มะม่วงออกผลนอกฤดู ส่วน Chlormequat สามารถใช้ป้องกันการหักล้มของธัญพืช Maleic hydrazide ซึ่งใช้ระงับการงอกของหัวมันฝรั่งและหอมหัวใหญ่ Ethephon ใช้ในการเร่งการไหลของน้ำยางของยางพาราเป็นต้น

การผลิตน้ำหมักฮอร์โมนพืชปราบศัตรูพืชครอบจักรวาล
เตรียมวัสดุ / ปัจจัยการผลิต

  1. รวบรวมพืชสมุนไพรที่มีฤทธิ์เป็นยาเช่น ข่า ตระไคร้เทศ ใบ/ยอดสะเดา ใบ/ยอดขี้เหล็ก ต้นกล้วย สาบเสือ บอระเพ็ด พริกเน่า หว่านเกราะเพชร โหระพา เถาตดหมา เป็นต้น
  2. รวบรวมพืชสมุนไพรที่มีฤทธิ์เป็นยาพิษ เช่น กลอย หางไหล หน่อง เห็ดเบื่อ หว่านอุตพิต ใบยูคาลิปตัส สาบแร้งสาบกา เป็นต้น
  3. นำพืชทุกชนิดที่เตรียมไว้ (ข้อ 1.1+1.2) สับให้ละเอียดด้วยพร้าเครื่องบดสับคลุกเคล้าให้เข้ากัน กลายเป็นเศษพืช
  4. กากน้ำตาล
  5. น้ำ

เตรียมอุปกรณ์

  1. ถังน้ำหมักพร้อมสายรด ขนาดต่างๆ
  2. พาย (ขนาดด้ามเสียม) ยาว 1-1.20 เมตร ตามขนาดถังหมัก
  3. พร้า / มีด หรือเครื่องบดสับ
  4. กะละมัง

วิธีทำใช้สูตร อัตราส่วน 3 ต่อ 1 ต่อ 10 ดังนี้

  1. ชั่งพืชที่บดสับเป็นเศษพืช เป็น………….กิโลกรัม เช่น 3 กิโลกรัม เทลงในกะละมัง
  2. ชั่งกากน้ำตาล เป็น……………ลิตร เช่น 1 ลิตร เทกากน้ำตาลลงผสมเศษพืช (ข้อ 3.1) คนให้ทั่วด้วยไม้พาย สังเกตเข้ากันดีแล้วเศษพืชจะเป็นสีน้ำ จึงเทลงใส่ในถังน้ำหมัก
  3. เตรียมน้ำ เป็น……………ลิตร เช่น 10 ลิตร เทน้ำลงผสมในถังน้ำหมัก
  4. ครบ 3 หรือ 7 วัน เปิดฝา ใช้ไม้พายคนให้ทั่วแล้วปิดฝาไว้ตามเดิมสามารถนำไปใช้ได้ เก็บได้นาน 6 เดือน ถึง 1 ปี

วิธีใช้น้ำหมัก
แนะนำการใช้ต่อไร่โดยประมาณ ตามลักษณะอาการที่เป็น น้ำหมัก 20-50 ลิตร ผสมน้ำ 1,000 2,000 ลิตร ฉีดพ่นหรือผสมปุ๋ยคอก 250-500 กิโลกรัม ผสมโดโลไมล์ 50 กิโลกรัม (พอกำหมาด) หรือผสมสารสะเดาผง 10-30 กิโลกรัม หรือบอระเพ็ดสด 10-30 กิโลกรัมหรือฝักคูณ 10-50 กิโลกรัม เป็นต้น หว่านในนาข้าว (ใช้ในเดือนสิงหาคม ร่วมใส่ปุ๋ยครั้งที่ 2) ถ้ามีเพลี้ยต่างๆ หนอนกินใบใช้น้ำมันเครื่องเก่าเทลงน้ำไม่เกิน 1 กระป๋องนม น้ำมันเครื่องจะกระจายทั่วผืนนาอุดตันระบบหายใจของเพลี้ยต่างๆ และ หนอนกินใบ

สรุป

  1. การนำน้ำหมักไปใช้ผสมปุ๋ยคอกยังไม่มีสูตรตายตัว ใช้ในปริมาณมากก็ไม่เกิดผลเสียแก่พืชเนื่องจากน้ำหมัก คือ อินทรียวัตถุ แนะนำให้เกษตรกรใช้ร่วมกับปุ๋ยคอกหรือปุ๋ยขี้ไก่ขี้หมูเพราะน้ำหมักฯ มีธาตุอาหารน้อยมากต้อง ต้นข้าวจะแข็งแรงต้านทานโรคได้
  2. น้ำหมักฯ ไม่ใช่ปุ๋ยแต่มีฤทธิ์ทางยา ขับไล่แมลงหรือป้องกันการลอกครอบหรือเบื่อเมากัดกินพืชไม่ได้ ตายไปเอง

ป้ายคำ : ,

เรื่องที่เกี่ยวข้องกับหมวด ภูมิปัญญา

แสดงความคิดเห็น